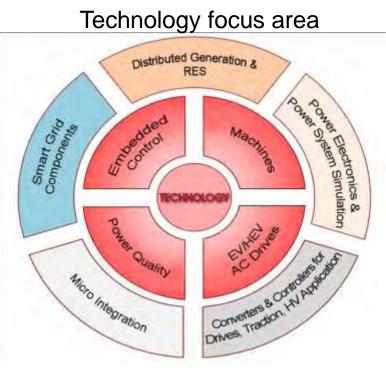


R&D initiatives of DeitY in Smartgrid technology through NaMPET

Second Brainstorming Session on Smart Grids National Smart Grid Mission 23-5-2016 New Delhi



National Mission on Power Electronics Technology(NaMPET)

NaMPET is a multi-institutional programme funded by DeitY involving research, development, deployment/ demonstration and technology transfer for production and commercialization of Power Electronics technology. This is implemented through a network of Academic Institutes, R&D laboratories and Industries with **CDAC Thiruvananthapuram** is the Nodal centre for implementation of this programme.

NaMPET Phase 1(completed)- 5 Years, ~ Rs 25 Crore NaMPET Phase II(Ongoing) ~Rs 50 Crore

DeitY All Rights Reserved

Smartgrid initiatives by DeitY through NaMPET

- Renewable energy integration, microgrids
- Power Quality mitigation technology
- Phasor Measurement Units, Wide Area Monitoring
- Smart Energy Meters
- Net Zero Energy Building(NZEB)
- Low Voltage DC system

Department of Electronics & Information Technology (DeitY) Ministry of Communications & IT, Government of India

Considered as Energy Internet with increased efficiency, availability, response and security

Larger use of renewable energy sources with positive impact on environment

Transforms the way power is delivered, consumed and accounted for

Major impact will be the reduction in peak demand

Renewable Energy Integration

- Grid Interactive Solar Photovoltaic Power Plants & WEG
- Microgrid Technology-Universal Front End for renewable energy sources

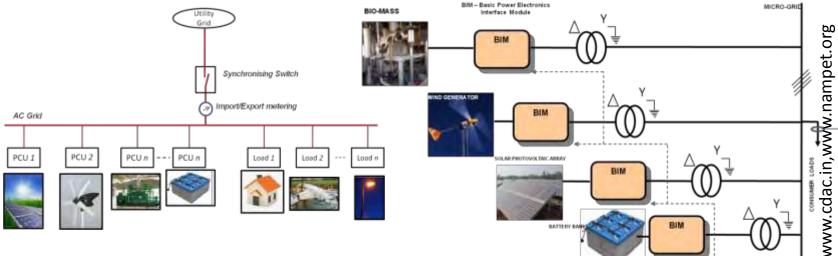
Grid interactive solar PV power plants

Features

- Capability to ride through faulty and disturbed grid conditions(LVRT)
- Voltage stabilization by reactive power support
- Improved Power Quality, Efficiency, reliability, modularity & redundancy
- Stiff control over active power like in conventional rotary generators
- Communication features and remote controllability
- Paralleling of Inverters and DC-DC converters
- Maximum Power Point Tracking for SPV systems
- Power export to grid at UPF and programmed PF
- Protections as per standard IEEE-929-2000 (Anti islanding protection) *Technology available*
- 25 kW Power Conditioning Unit(PCU) for roof top application
- MW Level PCUs

Renewable Energy Integration

DeitY All Rights Reserved



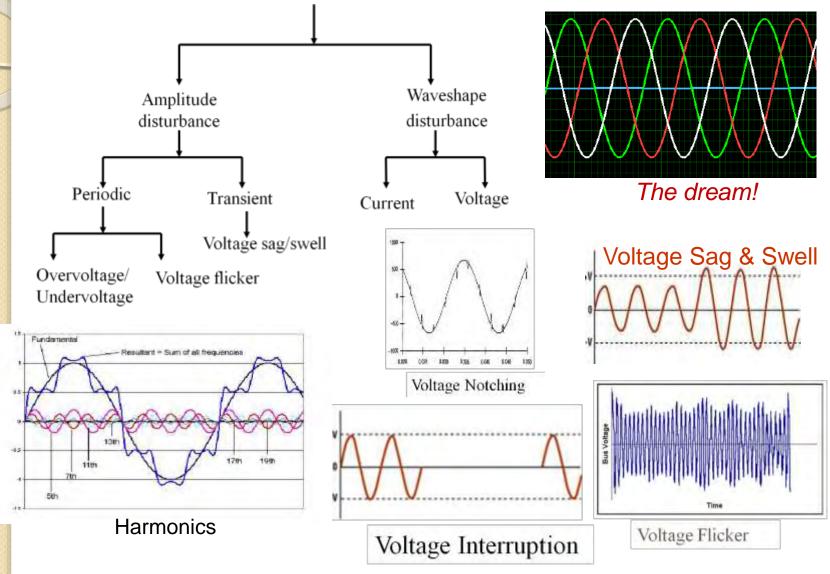
Department of Electronics & Information Technology (DeitY) Ministry of Communications & IT, Government of India

Renewable Energy Integration

Microgrid technology with universal front end power conditioning unit

- · Optimum power extraction from the renewable sources.
- · Power flow management (Active and reactive)
- Monitoring of thermal performance of circuit elements.
- Communication between individual blocks of the system and the central control unit.
- · Control during short circuits
- Maintenance of synchronism of the micro grid during grid interactive operation
- · Control during the islanding events

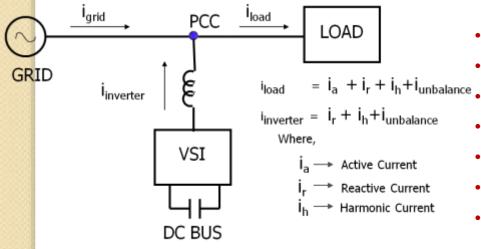
PCU

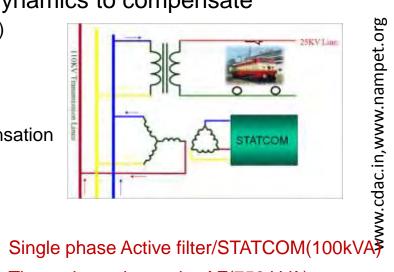

CCU

Moushuni island

Power Quality Technology

Department of Electronics & Information Technology (DeitY) Ministry of Communications & IT, Government of India




Power Quality Solutions

Custom Power devices

Inverter based solutions with very high dynamics to compensate

- Reactive currents(single phase and three phase)
- Harmonic currents
- Unbalance currents
- Neutral currents
- Voltage stabilisation with reactive power compensation

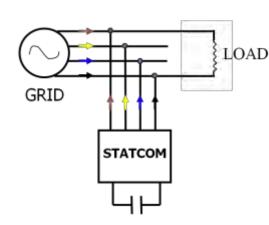
- Three phase three wire AF(750 kVA)
- Three phase four wire AF(2 MVA)
- Static Power balancer (50 kVA)
- Shunt hybrid filter (50 kVA)
- Dynamic Voltage Restorer (50 kVA)
- Unified Power Quality Controller(250 kVA)

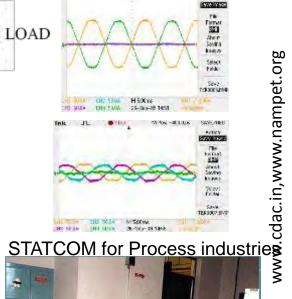
SHR2-50

Action

M Yog - 400 Jun

Power Quality Solutions


Static Power Balancer-50 kVA


AF for Steel mills-750 kVA

DeitY All Rights Reserved

1.2

2 Vak

8-2

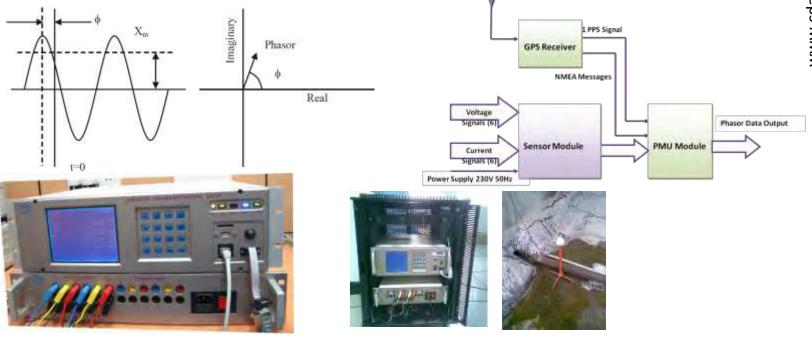
200 A 5ms

Tek Holde Soks/s

0 Acgs 🛐

M 5ms Ch1 /

DeitY All Rights Reserved

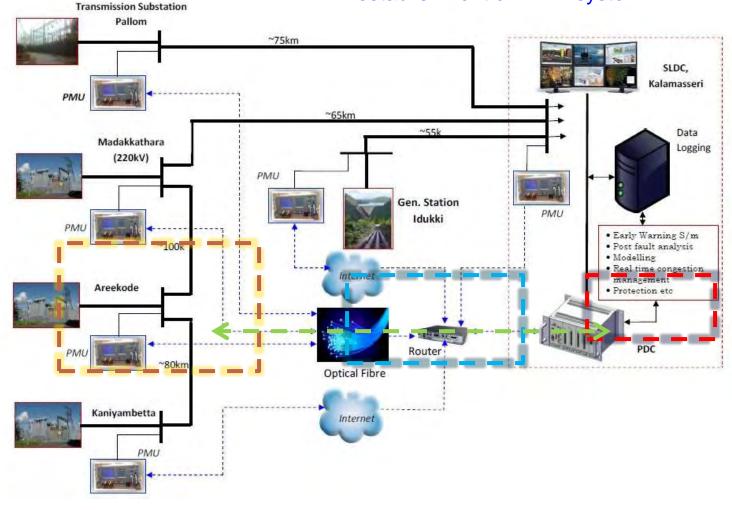

Department of Electronics & Information Technology (DeitY) unications & IT, Government of India

Synchronised Phasor Measurement Unit

- A device that samples analog voltage and current in synchronism with a GPS clock
- Samples are used to estimate the corresponding phasors
- Measure frequency & rate of change of frequency
- Timestamps all measurements
- Transmits time-stamped data to central control centre

Deity All Rights Reserved

PMUs installed at widely dispersed locations can estimate phasors simultaneously with GPS clock synchronism



Department of Electronics & Information Technology (DeitY) Ministry of Communications & IT, Government of India

Wide Area Monitoring

Project funded by DeitY CDAC-T, IITB, CPRI KSEB

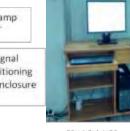
Deployment of indigenously developed PMUs in the 220 kV network of KSEB and establishment of WAM system

www.cdac.in,www.nampet.org

Wide Area Monitoring(Contd)

PMU panel frond side

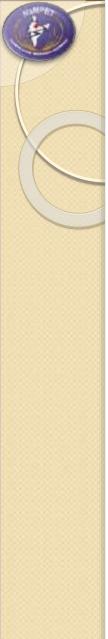
PMU panel -Back side



PT connections from KSEB's measurement PTs

Cable laying

PC installed at LDC

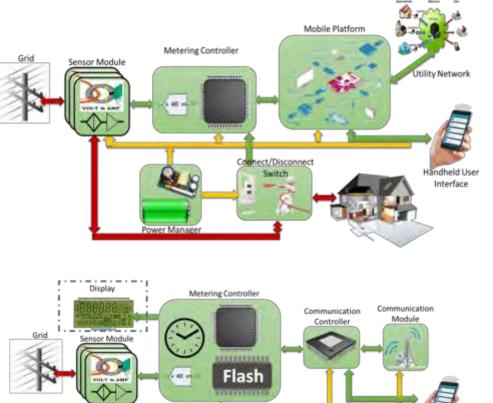

Parameter monitoring software

Development of Smart Energy Meter

Specifications – Single phase category I

Connection Type	Single phase 2 wire direct connected
Standards	IS 13779, IS 15959, IS 15884, IEC 62056-
	21,42,46,47,53,61,62
Metrology Accuracy	Class I
Rated Voltage	240 V (-40% to +20%) Single Phase
Rated Current	Ib $(Imax)A = 5(30)A$, withstands 120% Imax
Starting Current	0.2% lb
Frequency	50 Hz ±5%
Burden Voltage Circuit	2W / 8VA
Burden Current Circuit	<4VA
Load Contactor	Latching relays (optional)
Display	LCD
LED indicators	LED pulse 3200 imp/kWh
	LED Network status
Communication port/methods	GSM/RF/WiFi
Communication protocol	DLMS COSEM
Operating Temperature Range	-10 °C to +55 °C
Storage temperature range	-25 °C to +70 °C
Operating humidity	Up to 95% non-condensing
Degree of Protection	IP5 I

Development of Smart Energy Meter


Specifications – Three phase category IV

Connection Type	Three phase 4 wire direct connected
Standards	IS 13779, IS 15959, IS 15884, IEC 62056-
	21,42,46,47,53,61,62
Metrology Accuracy	Class I
Rated Voltage	240 V (-40% to +20%) Single Phase
Rated Current	Ib (Imax)A = 10(60)A, withstands 120% Imax
Starting Current	0.2% lb
Frequency	50 Hz ±5%
Burden Voltage Circuit	2W / 8VA
Burden Current Circuit	<4VA
Load Contactor	Latching relays
Display	LCD
LED indicators	LED pulse 3200imp/kWh
	LED Network status
Communication port/methods	GSM/RF/WiFi
Communication protocol	DLMS COSEM
Operating Temperature Range	-10 °C to +55 °C
Storage temperature range	-25 °C to +70 °C
Operating humidity	Up to 95% non-condensing
Degree of Protection	IP51

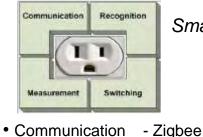
Development of Smart Energy Meter

ndheld User Interface

Connect/Disconnect


1GHz, ARM Cortex-A8 based circuit can support android and Linux OS Having 4GB internal and 512MB DDR3 RAM Expandable up to 32GB uSD

DeitY All Rights Reserved


www.cdac.in,www.nampet.org

Net Zero Energy Building(NZEB)

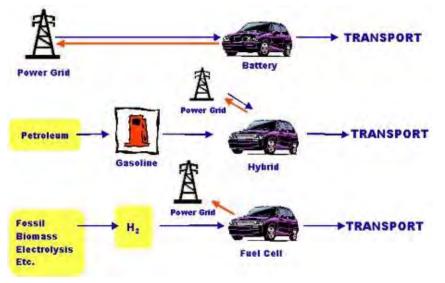
Project funded by DeitY through NaMPET Partners - CDAC-T & EMC

> Reducing the energy consumption Using suitable NZEB energy management architecture with Intelligent embedded controller platform
> Smart integration of Non-conventional energy sources along with Battery storage using Power Electronics interface

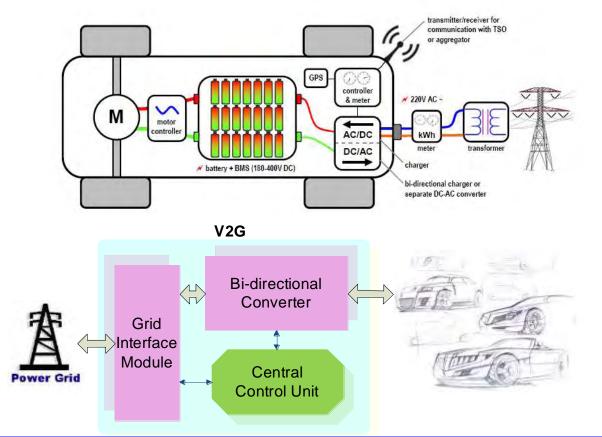
Smart plug

- software
 CT
- Measurement
- Switching

Recognition


- PCB relay

Vehicle to Grid Technology(V2G)


Most Extended form of V2G

- 100% Bi-directional Charger
- Power level of charge/discharge controllable
- Communication of Battery SOC to aggregator
- Location of Car aggregator
- Facility settings of Range for present & future drive
- The ability of the system to use large part of the battery SOC for power feeding

Vehicle to Grid Technology(V2G)

Bi-directional Converter

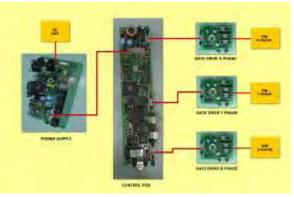
Power Electronic Equipment can be external or inside the vehicle Grid Interface Module

Smart metering and other interface for connecting Aggregators Central Control Unit

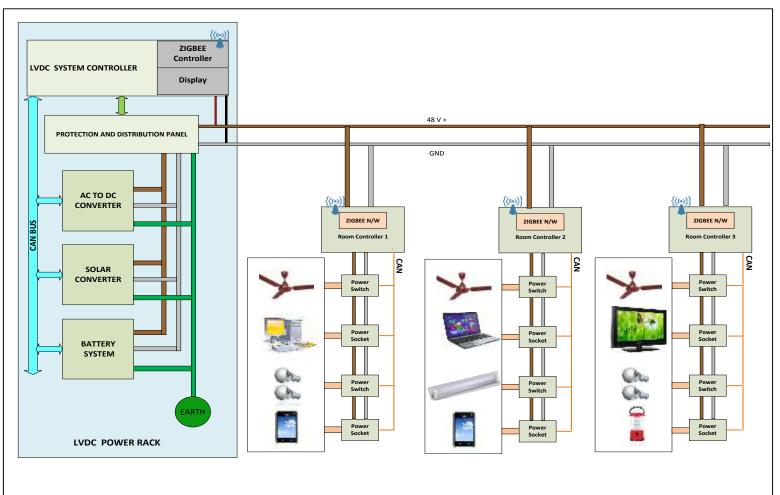
Digital controllers for EV & HEV operations & V2G

DeitY All Rights Reserved

Vehicle to Grid Technology(V2G)

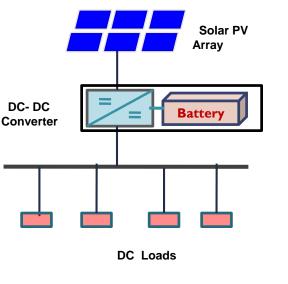

CDAC-T expertise towards V2G

Battery powered Electric vehicle with AC propulsion – M/s BHEL Bhopal India's First HEV (bus) for passengers – Jointly with M/s Ashok Leyland India's First 3 wheeler HEV (auto for passengers) – jointly with M/s KAL Grid connected PV Solar powered Inverter - CDAC-T



Low Voltage DC(LVDC)

LVDC Power and control architecture



www.cdac.in,www.nampet.org

Department of Electronics & Information Technology (DeitY)

- Wireless control and connectivity with a smart Devices
- Scheduling functions to reduce energy consumption
- LVDC socket and switch can \checkmark be switched ON/OFF using remote device
- One touch button to shutdown all the \checkmark DC appliances.
- Group and simultaneously control is \checkmark possible
- Appliance current & voltage can be \checkmark monitored and recorded
- \checkmark Saving energy and money



Department of Electronics & Information Technology (DeitY) Ministry of Communications 6 17, Government of India

LVDC Module Development

LVDC System Controller : A dedicated controller for LVDC power and communication network management

LVDC power plug & Socket : Power outlet with 48V based on IECTC 23 standard for a DC plug and socket outlet

LVDC power switch: Connecting fixed type of loads like BLDC fans and DC tubes lights

LVDC Power Converter: Supply the power required for the LVDC system. Dual Input with Solar PV & Battery. Rated power for 3Kw

Thank You