

Smart Grid Initiatives @ JMI

Prof. Mini S. Thomas Ph.D

IEEE PES Distinguished Lecturer (DL) Director, Centre for Innovation and Entrepreneurship Jamia Millia Islamia, New Delhi <u>mthomas@jmi.ac.in</u>

Jamia Millia Islamia (JMI)

- One of the Central Government Universities in India
- ***9** Faculties and 21 centers of learning
- Education, Languages, Law, Social sciences, Natural sciences, Engineering, Dentistry, Fine arts etc.
- \$210 courses,19,000+ students, 900 faculty
 members
- *220 acres of lush green campus in the heart of Delhi.
- http://jmi.ac.in/

Smart Grid Stakeholders

- Policy Makers
- Industry Standard Developers
- Utilities
- Equipment Manufacturers and Vendors
- Technology Companies
- Researchers and Research Labs

Smart Distribution

- Demand Side Management & Demand Response
- Distributed Energy Resources and Energy Storage
- Advanced Metering Infrastructure
- Smart Homes and Home energy Management Systems
- Plugged Hybrid Electric Vehicles
- Microgrids

Significance of SCADA Systems

- The Smart Grid Functionalities are application functions added to the Basic SCADA functions of
- Data Acquisition
- Remote control
- Report generation etc

Use of SCADA Systems

Distribution Automation** Distribution Management Systems**

**** Smart Grid Functionalities**

SCADA LABS @ JMI

SCADA/ EMS Lab SUBSTATION AUTOMATION Lab

Publications describing the labs

- 1. IEEE Transaction on Power Systems, Vol 19, August 2004
- 2. IEEE P& E Magazine, July/August 2010
- 3. IEEE Transaction on Education, Vol 54, May 2011

1. SCADA LAB

Lab for GENERAL Automation Components

DCS Processors used for Power Automation

A Substation & Transmission system is created in the lab, monitored & controlled

Hands-on-training of how analog and digital signals from the field reaches the control center HMI and the commands from the control center gets implemented in the field

SCADA Lab Overview SCADA Labs

26-May-16

SCADA Lab

The DCS Processor

Substation & Transmission line model

SCADA Labs

2. Substation Automation Lab

Main Features

- Relay IEDs with IEC 61850, UCA communication protocols
- Universal Secondary Test kit
- GPS clock
- Protocol Gateway
- Variety of PS Software
- Source code libraries
- BPL

SYSTEM ARCHITECTURE

Substation Automation Lab set up

Recent Research work in the Labs

SI No	Name of PhD Scholar	Title of PhD Thesis (Smart Distribution)
1	Nitin Gupta	Integration, Evaluation and Security analysis of Smart Metering Infrastructure
2	Amira Nisar	Design and Implementation of a Self Reliant Intelligent Distribution System
3	Seema Arora	Simulation of Multi-structured Broadband over Power-line system
4	Pawan Kumar	Optimal Operation of Automated Radial and Meshed Distribution System
5	Praveen P Terang	Distribution Generation Interface in a Smart Grid

Integration, Evaluation and Security analysis of Smart Metering Infrastructure

SCADA Labs

Design and Implementation of a Self Reliant Intelligent Distribution System Objectives

- Design & Simulate a Microgrid network operating under islanded mode and nonislanded mode
- Operate the MG with Demand response mechanism with comprehensive Control strategies with PHEV
- Demand response of a domestic customer household with different load models
- Control strategies for customer demand response for optimum operation
 20

Recent Research work in the Labs

SI No	Name of PhD Scholar	Title of PhD Thesis (Smart Transmission)
1	Ankur Rana	Performance Analysis of Wide Area Measurement and Control Systems
2	Saeed Roostaee	Reliability and availability assessment of
		transmission line protection functions based
		on IEC 61850 standards.
3	Afroz Ali	Designing of Wide Area Protection Scheme
		For Smart Grid
4	Sunil Gupta	Impact of IEC 61850 Protocol on Substation
		Performance

Performance Analysis of Wide Area Measurement and Control Systems

OBJECTIVES:

Latency in WAMS Network

✓Investigate the communication delays in WAMC systems due to the core components in the communication system.

✓ Identify the impact of the communication architecture on data quality specifically, the currency and completeness of the data for system configurations.

Reliability Evaluation in WAMS

WAMS Architecture

Network Configuration

5 <u>× 1</u>0⁻³ 4.5 STAR REDUNDANT RING Redundant with OSPF = Redundant with RIP 3.5 з 2.5 2 1.5 1 15 20 25 30 10 35 40 45 5 Time (sec)

Latency (sec)

Table 1	Table 1			
Scenarios	Max. Latency (msec)			
Star	1.189509			
Ring	3.117714			
Redundant Network without Protocol	4.383211			
Redundant Network with OSPF	3.010169			
Redundant Network with RIP	3.121255			
PDC timeout value used in INDIA is around	d 20-32 sec for PDCs (waiting time)			

Reliability Evaluation in WAMS

Reliability Assessment of WAMS

Request to NSGM

- Create an incubation Centre for Smart Grid related innovations
- Institute Scholarships for Smart Grid Research (eg. Visweshwaraya Scheme, DeitY)
- Coordinate Industry-Academia interaction for research collaboration
- Repository of problems faced by the industry & Repository of Professors with specialities and research facilities available, Handshaking will benefit both parties

NOVEL INITIATIVE:

***MOU with PGCIL/POSOCO**

- First Initiative, to train & certify the POSOCO system operators in the SCADA Lab
- First program conducted from Aug 2010, then 8 more one week programs
- Certified 157 System operators on 'SCADA Basics' & 15 on 'Advanced SCADA/EMS'
- Applying for accreditation by CEA

Electrical Power System Management

M. Tech In

- Curriculum includes SCADA, Substation Automation, Distribution Automation, Data communication, restructuring, deregulation, etc in addition to basic PS courses
- Hands on training in the SCADA & SA Labs
- Sponsored candidates admitted

The New Text Book: April 2015 release

Power System Scada and Smart Grids

Jamia Milla Islamia University New Delhi, India

John D. McDonald GE Energy Management - Digital Energy Atlanta, Georgia, USA

CRC Press is an imprint of the Taylor & Francis Group, an informa business

Power System SCADA and Smart Grids Mini S Thomas & John D McDonald CRC Press (Taylor & Francis) USA

Table of Contents			
Chapter I	Power System Automation		
Chapter II	SCADA Fundamentals		
Chapter III	SCADA Communication		
Chapter IV	Substation Automation		
Chapter V	Energy Management Systems For Control Centers		
Chapter VI	Distribution Automation/ Distribution Management Systems		
Chapter VII	Smart Grid Concepts		

You are most welcome to visit the Labs at the beautiful Jamia campus

THANK YOU!

mini@ieee.org