

TSDSI –NSGM Workshop on Leveraging 5G and Cloud for Smart Grids – India Context

20 August 2019

Overview of 5G technology landscape

Jishnu Aravindakshan
Vice Chair, TSDSI
jishnu@tejasnetworks.com

5G: Diverse Use case

5G requires delivery of high-speed mobile broadband and low-latency applications from a common infrastructure driving up deployment costs

5G: Key Technologies

5G/IMR-2020 as per ITU-R M.[IMT.VISION]

Mixed numerology

- Different sub-carrier spacing
- Scaling RAN BW up to 1 GHz with carrier aggregation/dual connectivity

Massive MIMO

- 256x256 MIMO (in mmWave band)
- Beamforming and user tracking

C-RAN (Centralized RAN) 5G Phase 2

 Distributed mmWave hotspot and/or split CU, DU and distributed RU

5G: Initial deployment for densifying 4G

5G densification of 4G Macro

5G: Deployment models

5G: Key challenges

- User data rate of 100 Mbps
 - Area Traffic capcity of 10Mbps/samtr

Higher data rate

X-haul

- Front-, Mid-, Backhaul
- 5GC <Backhaul>
 CU<Midhaul>DU<Fro
 nthaul>RU

• 1-10ms for eMBB

Low latency

(GPS less

 5G may not get GPS connectivity at many sites and will be primarily dependent on transport layer

5G Transport Requirement overview (4G in Blue)

5G: Front-haul options

Number of Antenna Ports	Radio Channel Bandwidth			
	10 MHz	20 MHz	200 MHz	1GHz
2	1 Gb	Glips	20 Gbps	100 Gbps
8	4 G os) Raginas	80 Gbps	400 Gbps
64	32 Gbps	64 Gbps	640 Chpr	3, 0 G ps
256	128 Gbps	256 Gbps	2,560 Gbps	12,800 Gbps
	Also ORAN (For us Ethernet + TSN)			

Network Slice

IoT (mMTC) Slice

Broadband (eMBB) Slice

Low latency (uRLLC) Slice

A network slice:

- could span across multiple parts of the network infrastructure (e.g. terminal, access network, core network and transport network)
- could also be deployed across multiple operators.
- comprises dedicated and/or shared resources, e.g. in terms of processing power, storage, and bandwidth and has isolation from the other network slices.

Net-neutrality Slice Internet

Infrastructure Layer

Application of Slice for Automotive (EV) vertical

5G: X-haul role for power companies

5G: X-haul role for power companies

5G: DISCOM/POWERTEL Open Issues

Deployment challenges

- Max tower access without grid disruption
- How can the operator be allowed access to the radio unit for maintenance?
- The need for faraday cage and armoured power cables to handle surge protection
- How to handle lightning?

Business model

- Auction of site access
- Infrastructure as a Service (laaS)
- Network Slice (mMTC or eMBB) as a Service (NSaaS)

Conclusion

Discom can have a key role in 5G

 Tower, power, space and location advantage can enable Discoms to generate addition revenue from telecom operators

Discom as a converged infra player

 Discom should become a converged communication and electricity provider

Thank you