

NOVEMBER, 2017

Microgrid for Mines

Agenda

- Overview of off-grid mining electricity operations
- How microgrids create value in mining
- Microgrid for mining business case
- Summary

Microgrid

Generation at the point of consumption and always available

Microgrid definition

Distributed energy resources and loads that can be operated in a controlled, coordinated way either connected to the main power grid or in "islanded"* mode.

Microgrids are low or medium voltage grids without power transmission capabilities and are typically not geographically spread out.

November 14, 2017

Typical off-grid power generation operations

Diesel or gas fired power stations with reciprocating engines or gas turbines

Conventional diesel power station

Industrial mining loads

How microgrids create value for off-grid

Key drivers of value creation and cost savings

Operational goals

- Providing essential off-grid quality power with blackstart capability
- Improving resiliency by having storage, generation and loads optimally coordinated
- Reducing reliance on diesel and associated supply chain risk and CO2 emissions

Lower operating costs, higher up-times and higher gross margins for mines

How microgrids create value for off-grid

Increasing renewable penetration requires enhanced microgrid control capabilities

Microgrid Integration Technologies	Controlled system	Energy contribution (Fuel reduction)	Power penetration (At peak solar/wind)
Limited control/ basic fuel saving No Renewables control, negative load	<u> </u>	7-10%	20-30%
Power control and optimisation Controlling renewables + generator		10-15%	20-50%
Power control and forecasting Controlling renewables + generator	中鲫溪溪	15-30%	50-70%
Power control and grid stabilisation Controlling renewables + generator + storage	Í P D ŽŽ	25-40%	100%
Power control and load management Controlling renewables + generator + storage + load		60-80%	100%
Power control + energy storage Controlling renewables + storage + load	雪飾 甲类类类	100%	100%

Broad range of technical solutions possible – design choice based mainly on economic criteria

ABB microgrids deliver 30 to 50% fuel reduction

Future projects benefit from lower PV prices

ABB references already show 30 to 50% fuel reduction possible with subsidies

Marble Bar & Nullagine, PowerStore/ PV/ Diesel

- Generates 1,048 MWh PV/ year
- Saves **35-40**% diesel consumption per year

Johannesburg, PowerStore/ PV/ Diesel

- Up to 50% reduction in electricity bills and fossil fuel consumption

Decreasing Solar PV costs to improve future business cases

Global Large Commercial PV system prices (1 to 5MW) USD/ Wp

- PV prices have reduced over 30% in past 2 years and continue to fall globally
- Commercial and utility scale systems reducing faster than household solar with the \$1/Wp already reached for utility scale1

Microgrid for Mining – Business Case

Various solar and storage scenarios tested using HOMER¹ optimization tool

Example: remote brownfield gold mining operation

Power System

- 5 MW average load
- 6.3 MW peak load
- 6 x 1.2 MW diesel generators

Business Case

- Delivered Fuel Cost: \$1US/I

- Solar installed cost: \$2US/Wp

- Average cost of capital: 11%

- Subsidies: none

Goal of the study

Determine when the Levelized Cost of Energy (LCOE) of 3 scenarios is lower than the diesel only base case

- Diesel & Storage
- Diesel & Solar PV
- Diesel & Solar PV & Storage

Microgrid for Mining - Business Case

Incremental hybridization options analyzed

Genset status On On (For reserve) Off

1. Base case - Diesel

- 6 generator system (1.2 MW each)
- 1 generator equivalent required as operating reserve at all times
- All generators that are on typically operate at same level

Slide 9

2. Diesel + BESS

- BESS removes need for operating capacity
- BESS can also delay or remove need to start up a generator during short term peaks

3. Diesel + solar PV

- Solar PV size limited in this case due to generator ramping limitation
- Additional generators must stay online in case of shading for 75% of solar production (potential reductions when using advanced forecasting)

4. Diesel + BESS + solar PV

- BESS provides required ramping
- During daylight hours all generators can be shut down completely

©ABB

November 14, 2017

©ABB

Microgrid for Mining - Business Case

Up to 28% reduction in fuel and CO2 possible when combining diesel with BESS and solar PV

Sensitivity analysis – Key driver of LCOE saving

Diesel price the largest single driver of LCOE savings, followed by solar PV price

Developing a microgrid project from concept to commission

The project lifecycle

Microgrid for Mining and Island Utility

Key takeaways

Benefit from microgrids

- Fuel saving (and associated reduction in CO2 emissions & maintenance costs)
- Reduced Levelized Cost of Electricity (LCOE)
- Attractive Internal Rate of Return on investments (IRR)
- Improved power quality

Get in touch with us

ABB Microgrids

To know more about our solutions, please visit: www.abb.com/microgrids

If you've any specific questions about our microgrid solutions, please write to me at sandipsinha@in.abb.com

#