

Smart Grid Development in Norway

Kjell Sand

Professor at Department of Electric Power Engineering, NTNU Scientific manager The Norwegian Smart Grid Centre

The Norwegian University of Science and Technology, NTNU

- 8 faculties and 55 departments and divisions
- 40.000 students
- Full time eq.: 6900, of which 4200 are in teaching, research and outreach positions (39 % female).
- 366 PhD finished in 2016
- 6800 bachelors and masters finished in 2016

STRATEGIC RESEARCH AREAS 2014-2023

Norwegian University of Science and Technology

Norway mainland energy use 2014 Mainly hydropower and oil – 67% renewables

Electric Energy Usage in Norwegian Households.

16 000 kWh per household (average)

Norway mainland climate gas emissions 2014 per sector : 34,9 mill. ton CO₂ equivalents.

Smart Grid Status Norway

Transmission/sub-transmission

"Smart"

MV Distribution

Not so "smart"

LV distribution/ supply terminal

Becoming "smarter"
Smart metering by 2019-01-01

Grid characteristics

- Low customer density, but high electricity use per customer
- High amount of cabines/cottages connected to the power system
- Long distances between power plants and load centers
- Significant amount of MV and LV distribution as overhead lines
- Approx. 70 % of LV distribution 230 Volts 30% 400 Volts
- Weak grids with approx. 40% of the supply terminals weaker than the standardized EMC reference impedance (IEC TR 60725)
- Demanding environment especially for overhead lines (wind, ice, snow, salt, moisture, vegetation...)

Requirements for smart meters in Norway

- Full roll out by the end of 2018
- Responsible party: DSOs
- Functional requirements
 - Register and store with a sampling frequency of 60 min (with options for 15 min sampling)
 - Standardized interface for communication with external equipment Moe Area Network (HAN port)
 - Connectable to other smart meters: Gas, heat, water
 - Secure storage of data in case of voltage interruption
 - Disconnect or limit customer power consumption
 - Exchange spot price and tariff information
 - Exchange control and earth fault signals
 - Data security and tampering measures
 - Measure active and reactive power (input and output)
 i.e. 4-quadrant measurements

HAN port requirements

- Data streaming of OBIS codes (IEC 62056-6-1 DLMS/COSEM)
- MBUS (EN 13757-2)
- RJ-45 connection (ISO/IEC 8877)
- Data:

Active power (import/export)2,5 sec interval

Reactive power and direction10 sec

Currents (L1, L2 og L3)10 sec

Voltages (L1, L2 og L3)10 sec

Energy (import/export)Hourly

Reactive energy (import/export) - Hourly

Time stampHourly

Might support e.g. display, demand side management, demand response

Plan and status for smart meter rollout in Norway

- In total approx. 2.9 mill. smart electricity meters to be installed
 - 2.5 mill. smart meters in households and cottages
- Meters are installed inside buildings
- Average installation costs per metering point: 3500 NOK (including software)
- Total costs: approx. 10 Bill. NOK
- Increased grid tariff per household: 300 NOK/year

The development is monitored closely by the regulator based on mandatory DSO reports

Source: www.nve.no (Regulator's web site)

Smart meters - Communication solutions

Who owns the metered data?

- Use of meter data is regulated by the Personal Data Protection Act
- DSOs and power retailers can use the data necessary to invoice the customer
- The customer decides who should have access to their data
- The DSOs can only store the customer data for 3 years

National datahub for meter data and customer data exchange – operated by the Norwegian TSO: Statnett

Demand will become more flexible

Industry level

Home level

Apparatus level

EVs

Flexibility potential today:

Industry

3000 MW

Buildings

2000 MW

i.e. 20% of system hourly peak load

Value of demand side price elasticity

 p_0

 p_1

Aggregators are harvesting flexibility

Household offers - three different technical products tested with different customer messages

eWave. Display

Home control

AMI Price signal response

Energy savings winter 2014 vs 2013

- Site 1 (rural)
 - Test group net reduction (temp. corr) -16,3%
 - Control group net reduction (temp. corr) +0,1%
- Site 2 (urban)
 - Test group –net reduction (temp. corr) -5,3%
 - Control group net reduction (temp. corr) 0,0%

Statnetts demand response pilot

Disconnection time: 5 sec.

EV/PHEV development

Population 5,2 mill.
Private cars: 2,4 mill.
Trucks, lorries, buses: 0,4 mill.
PHEVs/EVs (August 2017): 175.000

Private car sales 2016- market shares

No. of public charging stations (Many have private charging at home)

Initial benefits/incentives electric vehicles in Norway – from 2008/2009

- No import tax (High import tax for fossil fuel vehicles)
- No value added tax (VAT in Norway: 25%)
- Low annual road tax (between 10 and 20 % of fossil fuel vehicles)
- Free parking in public parking places
- Free charging at public charging stations
- No toll when driving on toll roads
- Possible to drive in the bus lane
- No charge for the car on national ferries (must pay passenger rate for driver)
- 50 % discount on company car taxation
- Fuel economy (1 l gasoline : 2,2 US\$ 1 kWh: 0,13 US\$)

Tax example medium sized gasoline fueled car

25 000 US\$

CO₂ - 140 g/km : 4 000 US\$
 Weight - 1400 kg : 10 500 US\$

Price without tax :

Motor - 180 Hk : 7 000 US\$

NO $_{x}$ - 30 mg/km : 200 US\$

• VAT (25%) : 6 250 US\$

• <u>Total</u> : <u>52 950 US\$</u>

EV energy consumption - not a challenge

Average driving distance 15.000 km per/yr

EV electricity use
 5,3 - 7,1 TWh/yr (all cars EVs)

Hydro power generation: 139 TWh/yr (last two last years)

Distribution system challenges might be expected - especially in weak grids

DG (<10 MW) in Norway today- by energy source

Common DG situation in Norway

Small hydro power plants (1 - 10 MVA) in areas with low consumption and weak grids

- Generation much higher than local consumption
- Strongly varying generation (river plants without reservoir capacity)
- Long feeders and high voltage levels when the generation is high

Some challenges for DG integration

What about PV?

Increased interest for PV in Norway

- New building codes (Zero Energy Buildings)
- Cost development of PV

Potential better than earlier estimated due to cold climate, clean air, reflection from snow parts of the year

City	Irradiance [kWh/m²]
München	1330
Berlin	1260
Oslo	1300
Bergen	901
Trondheim	1020

Example - Skarpnes project

- Norway's first zeroenergy housing area
- 21 buildings
- 17 family houses
- Energy System:
 - Heat Pumps
 - PV (~ 200 kWp)

Need for better AMI resolution than hourly averages to manage voltage quality

To provide grid and market benefits from the smart meter roll-out is high on the agenda

Example_ Use case voltage quality monitoring

Data from one day measurements – 6900 smart meters

Micro grids in Norway

Drivers

Environment

Pilot studies/projects

- Islands replace diesel generation with renewables
- Islands supplied by old submarine cables micro grids an alternative to traditional reinvestments
- Urban micro grids lighthouse projects with PV
- Cottage and cabin areas without grid connection

Stadium roof top PV with battery

Mountain cafe – Weak grid Battery for 24h island mode

Sub-Pilot #2: Sandbakken

Transformer capacity: 800 kVA
Supply Voltage: 400V TN
Battery Storage: 240 kWh
EV Charging: 6 Terminals
Customers: 1

Generation: PV (1200m2, 184kWp) Wind (4 mills, 12kWp)

Annual production: est. 169 MWh
Consumption: est. 200 MWh
Peak Load: est. 300 kW

Motivation – self sufficiency

Last slide:

EV fuel Norway: Hydro power

