

Interoperability Challenges in AMI Indian Context Vinoo S Warrier

Agenda

- Background Information
 - Communication Standards Data Model and protocol services, Layering
 - Interoperability and Interchangeability
 - Smart Grid Network Topology
- Interoperability Challenges
- Q&A

The DLMS/COSEM standards

COSEM interface object model **OBIS** identification system

Data

Tariff functions

Access control

Comm. setup

IEC

62056

-61

-62

EN 13757 Part1

-42
-46
-47
-53

PROTOCOL

Application - Model - Protocol

Loadrol **Mapping OBIS Object identification system** Channel Quantity Processing Energy type Classification Historical COSEM **collect string COSEM Application layer** Protocol data units **OSI / Internet lower lavers**

Data Modeling

- The model provides a functional view of the meter
- Similar objects make up an interface class
- All interface classes have the same generic structure
- All interface classes can be accessed with the same services.

Attribute 2

Attribute n

Method 1

Method n

Object Naming - OBIS Codes

■ Electrical *∑Li* active energy import, rate 2, current billing period

Medium: Electricity

Protocol Layering

DLMS meter serial comm

Data model IEC 62056-61,62

Application Layer IEC 62056-53

HDLC IEC 62056-46

Physical IEC 62056-42

RS232/485 Optical port PSTN/GSM modem DLMS meter PLC comm

Data model IEC 62056-61,62

Application Layer IEC 62056-53

LLC IEC 61334-4-32

MAC+Phy IEC 61334-5-1

Power Line Carrier

DLMS meter IP comm

Data model IEC 62056-61,62

Application Layer IEC 62056-53

COSEM Transport for IP IEC 62056-47

TCP/UDP, IP layers

Ethernet GPRS PPP DLMS meter future comm

Data model IEC 62056-61,62

Application Layer IEC 62056-53

Communication Profile

Future communication media

Interoperability Vs. Interchangeability

- Open Standards like DLMS/COSEM already provide for Interoperability due to
 - Standard data models
 - Standard services
 - Unambiguous data naming
- However since DLMS/COSEM has to cater to a global scale it often supports multiple options for the same features – flexibility of models and services
- This can hinder Interchangeability hence the role for Companion Specifications

Role of Companion Specification Wolkitech

Roles	IS-15959 Examples
Lists of elements, features or functions required	Object-lists, required Interface Classes and Services
Choices to be taken where the international standard offers alternatives	Activity Calendar class for tariff instead of Schedule class
Fixing some parameter values	Number of tariff timezones to be supported, Number of associations and association properties, default password
Elements, where the international standard leaves freedom for country specifications	India specific OBIS codes, India specific Event codes

Conventional Networks topology

Layering in Conventional Networks

- Modem example
 - COSEM PDU (protocol data unit)
 - DLMS/COSEM Wrapper for IP Networks (IEC62056-47)
 - TCP Frame
 - IPV4 PDU
 - PPP/SLIP
 - Modem carrier (GSM/GPRS)
- Interoperability issues in carrier layers handled by separate forum and evolved into mature standards over time

Smart Grids Network Topology

Source www.tepco.co.jp

Layering in Smart Grid networks

Data Plane traffic protocol layering – RF example

- COSEM PDU (protocol data unit)
- DLMS/COSEM Wrapper for IP Networks (IEC62056-47)
- TCP Frame
- IPV6 PDU
- 6loWPAN Convergence layer
- IEEE802.15.4e MAC Layer
- IEEE802.15.4g PHY Layer
- The above represents just one protocol stack profile. There could be dozens.
- In addition to data plane traffic, different layers will have control-plane traffic to manage the layer-specific setup and configuration

Layering in Smart Grid networks

Control Plane traffic protocol layering

- RPL (Routing Protocol for Lossy networks) Mesh setup and reconvergence
- 6loWPAN neighbour detection and headercompression setup
- IEEE802.15.4e MAC Layer L2 security setup, Mesh join authentication, dynamic key setup
- EAP/EAPOL authentication protocol
- The above represents just one protocol stack profile.
 There could be dozens.

Security - Smart Grid networks

- In addition to Application Layer security, there are options for securing and authenticating messages at the L4 layer (eg: TLS), L3 layer (eg: VPN) and even at the L2 layer
- Systems can elect to use any of these options or even to combine one or more, or all, these options
- Decision to use security at a layer can be different for the WAN and for the NAN. For example, at the NaN, a DoS attack can be more effective since the network resources and bandwidth are more constrained.

Security – Cipher suites

- Key Agreement Handshaking and setup of keys for encryption and authentication
 - RSA, Diffie-Hellman, ECDH, SRP, PSK ...
- Authentication RSA, DSA, ECDSA ...
- Block Ciphers RC\$, Triple DES, AES ...
- Message Authentication Code SHA, MD5, MD4 ...
- Example of a cipher suite:
 - TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256
- There are hundreds of possible cipher suites.

Interoperability Challenges in Smart Grid Networks

- Some protocol layers have inter-dependencies with other protocol layers – RPL with IP, RPL with 6loWPAN, EAP with MAC Layer etc.
- Each of these protocols have as much (if not more) complex parameters, settings and choices as DLMS/COSEM has. This would require a companionspecification like exercise to be performed for each layer to remove ambiguity and interoperate
- Some situational data in the LAN control-plane traffic may need to be interfaced through the WAN all the way to the Head End. This requires rigorous modelling of that data

Copyright © Kalki Communication Technologies Limited All Rights Reserved

Thank You!

TRAIN YOU