

Issues in Electricity System and Expectation for Japan-India Cooperation

Takamasa Murakami 14th, Nov, 2017 New Energy and Industrial Technology Development Organization

Outline

About NEDO

Global Trend of Smart Grid

- NEDO's Experience in India
- Solutions for Grid Stabilization

What is NEDO?

Established in 1980

Personnel: Approx. 900 (As of 2016)

Budget: Approx. 1.1 billion € (FY 2016)

Mission of NEDO

Address energy and global environmental problems

Enhance Japan's Industrial Competitiveness

Positioning of NEDO

Needs for Generation & Transmission Management NEDO

Needs for Demand Side Management

World Trends

Duck Curve (ex. California)

■ The risk of over-generation in the afternoon and an increased need for ramping as solar drops off in the late afternoon.

Self Consumption (ex. Germany)

■ Self-generated solar electricity to be self-consumed.

Distribution System Operator (DSO)

■ Increasing amounts of RE sources at the distribution level will change the roles and responsibility of DOS for balancing, frequency control..etc

Failing traditional business model

Falling demand and shrinking electricity market due to the increase of solar PV.

Source: AEMO's Electricity Market Management System (EMMS), EnergyAustralia

Source: Australian PV Institute $_{-}5$ $^{\downarrow}$

Smart Grid/Smart Community projects of NEDO (NEDO

Demonstration Project on Gridinterconnection of Clustered PV Power Generation Systems

 Demonstration Project on New Power Network Systems

2006-

2010-

Smart Grid/Smart Community Demonstration Projects abroad

2003-2002-

2004-

Wind Power Stabilization Technology Development Project

Verification of Grid Stabilization with Largescale PV Power Generation Systems

Smart Community Projects in Japan

(Fy2011-2014 by METI)

Housing complex

- · 700 households and HEMS
- · Consulting business about saving energy.

Keihanna Science City

Wide-area metropolis

- · 4000 households and HEMS
- ·10 large-scale building and BEMS.
- · Multiple storage batteries.

Yokohama City

Kitakyushu City

Designated supply area

- *Power is supplied by Nippon Steel & Sumitomo Metal Corporation.
- Dynamic pricing system for 180 households.

Toyota City

Separate housing

- ·local production for local consumption
- '67 households equipped with solar panels, household fuel cells, storage batteries.
- `Advanced transportation system(EV, PHV)

NEDO's Activities in India

Ongoing Projects

- Micro-Grid System with PV Power Generation (-2019)
- Green Telecom Tower Project (-2016)
- Smart Grid Pilot Project (-2018)
- High-performance industrial furnace (-2018)
- EMS for Multiple Energy Sources at Steel Plant (-2019)
- ICT Based Green Hospital (-2019)

Completed Projects

- FS for USC Coal-Fired Power Plant in Delhi (-2016)
- 8 FS for USC Coal-Fired Power Plant in AP (-2016)
- Parallel Micro Hydro Power Generation System (-2015)
- 10 Sinter Cooler Waste Heat Recovery (-2014)
- 11) Highly Efficient Coal Preparation Technology (-2014)
- Increasing the Efficient Use of Energy Using a Coke Dry Quenching System (-2011)
- Converting a Diesel Generator to Dual-fuel Operation 13 (-2011)
- Regional Energy Efficiency Centre (-2011)
- Utilization of Sensible Heat from Blast Furnace Hot Stove Waste Gas (-2004)
- Waste Heat Recovery System of Cement Plant (-2004) 8

Smart Grid Demonstration Project in Haryana

 Combining "Technology Demonstration" and "Capacity Building" to make power distribution smarter in Haryana, India.

Capacity Building for DISCOM

 By providing operational know-how, smart grid-related technologies will contribute to reduce distribution losses, failure rate of distribution transformers, improve the frequency of power failures.

Startup Ceremony at the Training Center (Nov 3rd, 2016)

Smart Grid Project at Panipat, India

Haryana Power Training Institute (HPTI), Panchukla

- Demonstration Room
- Training Room
- Switchgear

- Substation Panel
- Smart Meter

Operation Center and Demonstration Field, Panipat

Operation & Monitoring by

- SCADA
- MDMS
- OMS

Smart Grid Pilot Project in Panipat – Cont

Smart Grid Project at Panipat, India

Current Feeder Network

Multi divided and multi connected distribution network

Green Telecom Tower Project

 The purpose of this project is to reduce diesel fuel consumption of backup diesel generators at telecom tower sites by installing PV cells and lithium-ion batteries controlled by the energy management system (EMS).

Green Telecom Tower Project - cont.

Demonstration Sites

Key Information

- Period: 2013-2017
- Cost: US\$ 6 M
- MOU Signatory: DEA, MNRE, DOT, VIOM, GTL
- Tech Provider: NEC
- Energy Saving: 50%

Signing Ceremony of MOU in Delhi

Summary Result of EMS (Phase 2)

DG Fuel Consumption

Energy Cost

□CO₂ Emission

Micro-Grid System with PV Power Generation

The purpose of this project is to demonstrate a micro-grid system by using Japan's Energy Management System in Neemrana Industrial Park. The EMS monitors supply-demand of electricity for factories, controlling power supplies effectively from the grid, diesel generators and PV cells.

5MW PV System in Neemrana Industrial Park

Key Information

- Period: 2012-2019
- Cost: US\$ 27 M
- MOU Signatories: DEA, MNRE, DMICDC
- Tech Provider: Hitachi
- Capacity: 6MW

Balancing grid on RE expansion

Battery Storage Applications

Our experience on Storage Battery

Japan has an experience various Large Capacity Storage Batteries.

Key to deploy Storage Battery

- Monetize the value of the storage battery function.
- For monetization, institutional framework and market design is essential.

The Power Grid and the applications for battery storage

Demand Response

Shift the electricity demand

Thank you for your attention

http://www.nedo.go.jp/english/index.html