Business Models for Smart Grid

Pankaj Batra

Chief Engineer

Central Electricity Authority

Business Model as defined in Investopedia

• A **business model** is the plan implemented by a company to generate revenue and make a profit from operations. The model includes the components and functions of the business, as well as the <u>revenues</u> it generates and the expenses it incurs.

What is a Business Model – Michael Lewis

- Michael Lewis said that "All it really means is how you planned to make money"
- To make a simple point about the dot.com bubble. The term, he says dismissively, was "central to the Internet boom; it glorified all manner of half-baked plans ...
- The "business model" for Microsoft, for instance, was to sell software for 120 bucks a pop that cost fifty cents to manufacture ...
- The business model of most Internet companies was to attract huge crowds of people to a Web site, and then sell others the chance to advertise products to the crowds. It was still not clear that the model made sense." Well, maybe not then.

What is a Business Model – Peter Drucker

- Peter Drucker defined the term "assumptions about what a company gets paid for".
- Drucker's theory of the business was a set of assumptions about what a business will and won't do...
- A good business model answers Peter Drucker's age-old questions, 'Who is the customer? And what does the customer value?'

Business models for Distribution Utilities for Smart Grid components

- Installation of Distribution SCADA (includes Outage Management function/Energy Audit function)
- Installation of Advanced Metering Infrastructure (AMI) (i.e Smart Meters, Communication, Hardware and Software).
- Installation of Remote Transformer Monitoring
- Installation of Fault Locator in a feeder
- Rooftop solar PV encouragement
- Tariff Structuring (incentives for demand response)

Distribution SCADA

Applications That Software to Process/ Advanced Meters + Communications Store Meter Data **Use Meter Data** Billing Meter AMR 1 Communications **Load Forecasting** Load Management Meter Data Meter AMR 2 Communications Management Outage Management Consumer Demand-side Management Meter AMR 3 Communications **Demand Response** Standard Meter Meter Data Repository

Remote Transformer Monitoring Unit

 Measures Voltage, Energy, Current and Temperature.

Applications

- Asset Management and Condition Monitoring Preventive Maintenance Recognition
- Demand Response Assistance
- Distributed Generation Monitoring (i.e., bidirectional energy monitoring)
- Transformer Under/Over-sizing Recognition (e.g., Electric Vehicle charging station impacts,etc...)

Cable Fault Locator

A high voltage impulse is transmitted down the cable to cause the fault to arc. The arcing fault is then pinpointed using an appropriate impulse detector.

Rooftop solar PV

Benefits to the Distribution Utility in the Indian context

- Savings in AT&C losses
- Handling of variability of intermittent type of Renewable Energy Sources.
- Reduction of downtime due to outages in distribution system.
- Reduced burning of distribution transformers.
- Optimum utilization of transmission and distribution assets.
- Savings in sub-transmission and distribution system upgrades.
- Reduction in electricity bills of consumers.

Benefits to the customer in the Indian context

- Reduction in electricity bills of consumers.
- Improved reliability of service.
- Improved quality of supply.

Objective of the Business model for the State Distribution Utility

- Mutual benefit for the Distribution Utility and the consumer.
- For upfront money, technology company can provide the same.
- Useful to have the technology company to also do the billing and collection along with the maintenance of the Distribution SCADA and AMI.

Business model for the Distribution Utility for Distribution SCADA and AMI

Costs:

- Installation of Distribution SCADA (includes Outage Management function/Energy Audit function)
- Installation of Advanced Metering Infrastructure (AMI) (i.e Smart Meters, Communication, Hardware and Software).
- Benefits:
- Savings in AT&C losses
- Reduction of downtime due to outages in distribution system, therefore more revenue.
- Optimum utilization of transmission and distribution assets.

Savings in AT&C losses – Test case UP

- 93,052 million units consumption for 2015-16.
- AT&C losses 27%
- Saving of 1% losses means saving of 930 million units in a year.
- Average cost of purchase About Rs. 4 per unit.
- Savings in Rupees Rs. 372 crores.
- Cost of one Distribution SCADA Rs. 5 crores
- Cost of Distribution SCADA for 4 Distribution Utilities RS. 20 crores

Savings in AT&C losses – Test case UP

- Number of consumers registered About 1 crore
- Cost of AMI Say about Rs. 2000 per unit
- Total cost of AMI meters Rs. 2000 crores
- Cost recovery for 1% savings in AT&C losses for 6 years Rs. 2220 crores.
- If 2% savings, cost recovery in 3 years, if 3% savings cost recovery in 2 years, if 6 % savings, cost recovery in 1 year.
- Models: Technology company bears this initial cost, and recovers this through demonstrated savings on a monthly basis; then continued savings for the Distribution company.

Other Business Models for Smart Grid

- Installation of Remote Transformer Monitoring
- Installation of Fault Locator in a feeder
- Rooftop solar PV encouragement
- Tariff Structuring (incentives for demand response)

LIST OF BENEFITS AS PER EPRI COST BENEFIT ANALYSIS (2010)

- Optimized Generator Operation
- Reduced generation and transmission and distribution capacity investment
- Reduced Ancillary cost
- Reduced Congestion Cost
- Reduced equipment failure
- Reduced meter reading cost

LIST OF BENEFITS AS PER EPRI COST BENEFIT ANALYSIS (2010)

- Reduced electricity theft
- Reduced losses
- Reduced outages
- Reduced fossil fuel usage
- Reduced CO2, SOx, NOx emissions
- Reduced Sags and Swells

Thank You

